LARF in Casual Inference

Theoretical Analysis and Empirical Application

Yi Chai Chen Fang

Advanced Research Seminar

May 18, 2023

Table of Contents

- Theoretical Analysis
- 2 Empirical Application & Results
- 3 Discussion
- 4 Appendix

Table of Contents

- Theoretical Analysis
- 2 Empirical Application & Results
- 3 Discussion
- 4 Appendix

Abadie (2003)

- Assumption
 - ▶ Independence; Exclusion; First stage; Monotonicity
- LARF

$$E[Y|X,D,D_1>D_0]$$

Identify LATE

$$E[Y|X, D = 1, D_1 > D_0] - E[Y|X, D = 0, D_1 > D_0] = E[Y_1 - Y_0|X, D_1 > D_0]$$

Abadie's Pseudo-Weight

$$\kappa = 1 - \frac{D(1-Z)}{P(Z=0|X)} - \frac{Z(1-D)}{P(Z=1|X)}$$

• Theorem 3.1

$$E[g(Y, D, X)|D_1>D_0] = \frac{1}{P(D_1>D_0)}E[\kappa * g(Y, D, X)]$$

Estimation LARF by Linear Regression

Parameters

$$(\alpha_{0}, \beta_{0}) = \underset{\alpha, \beta}{\arg\min} E[\{Y - (\alpha D + X^{'}\beta)\}^{2} | D_{1} > D_{0}]$$

• By Theorem 3.1

$$(\alpha_0, \beta_0) = \underset{\alpha, \beta}{\operatorname{arg \, min}} E[\kappa \{Y - (\alpha D + X^{'}\beta)\}^2]$$

- Two-Step Estimation
 - Construct $\hat{\kappa}$ by estimating P(Z=1|X)
 - Estimate LARF using:

$$(\hat{\alpha},\hat{\beta}) = \operatorname*{arg\,min}_{\alpha,\beta} E[\hat{\kappa}\{Y - (\alpha D + X^{'}\beta)\}^{2}]$$

Comparison with 2SLS

Parameters of linear specification for LARF

$$\left(\begin{array}{c}\alpha_{0}\\\beta_{0}\end{array}\right)=\left(E\left[\left(\begin{array}{c}D\\X\end{array}\right)\quad\kappa\quad \left(\begin{array}{c}D\\X\end{array}\right)'\right]\right)^{-1}E\left[\left(\begin{array}{c}D\\X\end{array}\right)\quad\kappa\quad Y\right]$$

Probablity limit of 2SLS

$$\begin{pmatrix} \alpha_{2SLS} \\ \beta_{2SLS} \end{pmatrix} = \left(E \left[\begin{pmatrix} Z \\ X \end{pmatrix} \quad \begin{pmatrix} D \\ X \end{pmatrix}' \right] \right)^{-1} E \left[\begin{pmatrix} Z \\ X \end{pmatrix} \quad Y \right]$$

- Without covariates, $\alpha_{2SLS} = \alpha_0 = LATE$
- With covariates, 2SLS estimands do not only respond to the distribution of (Y, D, X) for compliers

Estimation LARF by Linear Regression

Abadie's Pseudo-Weight

$$\kappa = 1 - \frac{D(1-Z)}{P(Z=0|X)} - \frac{Z(1-D)}{P(Z=1|X)}$$

• Theorem 3.1

$$E[g(Y, D, X)|D_1>D_0] = \frac{1}{P(D_1>D_0)}E[\kappa * g(Y, D, X)]$$

Parameters

$$(\alpha_0, \beta_0) = \operatorname*{arg\,min}_{lpha, eta} E[\{Y - (lpha D + X^{'}eta)\}^2 | D_1 > D_0]$$

By Theorem 3.1

$$(\alpha_0, \beta_0) = \operatorname*{arg\;min}_{\alpha, \beta} E[\kappa \{Y - (\alpha D + X^{'}\beta)\}^2]$$

- Two-Step Estimation
 - Construct $\hat{\kappa}$ by estimating P(Z=1|X)
 - Estimate LARF using:

$$(\hat{\alpha}, \hat{\beta}) = \underset{\alpha, \beta}{\operatorname{arg min}} E[\hat{\kappa} \{ Y - (\alpha D + X'\beta) \}^2]$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かくで

LARF and 2SLS

Parameters of linear specification for LARF

$$\left(\begin{array}{c} \alpha_0 \\ \beta_0 \end{array}\right) = \left(E\left[\left(\begin{array}{c} D \\ X \end{array}\right) \quad \kappa \quad \left(\begin{array}{c} D \\ X \end{array}\right)'\right]\right)^{-1}E\left[\left(\begin{array}{c} D \\ X \end{array}\right) \quad \kappa \quad Y\right]$$

Probablity limit of 2SLS

$$\begin{pmatrix} \alpha_{2SLS} \\ \beta_{2SLS} \end{pmatrix} = \left(E \left[\begin{pmatrix} Z \\ X \end{pmatrix} \quad \begin{pmatrix} D \\ X \end{pmatrix}' \right] \right)^{-1} E \left[\begin{pmatrix} Z \\ X \end{pmatrix} \quad Y \right]$$

- Without covariates, $\alpha_{2SLS} = \alpha_0 = LATE$
- With covariates, 2SLS estimands do not only respond to the distribution of (Y, D, X) for compliers.
- When $\hat{P}(Z=1|X)$ is linear in X or constant treatment effect, $\alpha_{2SLS}=\alpha_0$

Table of Contents

- Theoretical Analysis
- 2 Empirical Application & Results
- 3 Discussion
- Appendix

Reference

▶ Banerjee, A., Duflo, E., Glennerster, R., & Kinnan, C. (2015). The miracle of microfinance? Evidence from a randomized evaluation. American economic journal: Applied economics, 7(1), 22-53.

Background

- Rapid Expansion of Microfinance institutions (MFIs) (7.6 million in 1997 to 137.5 million in 2010)
 - "A type of banking service that is provided to unemployed or lowincome individuals or groups who would otherwise have no other means of gaining financial services."
- ► **Support**: "Fast poverty alleviation" (e.g. Mohammed Yunus and the Grameen Bank for their contribution to the reduction in world poverty)
- ▶ Backlash: "Hyperprofits off the poor" (e.g. a rash of reported suicides linked to over-indebtedness on *New York Times*, little regulation from government)

• Experiment Design Timeline

- ▶ Studies households over 3.5 years after the introduction of the system: the longest period of any study.
- ▶ In 2005, 52 of 104 poor neighborhoods in Hyderabad, India were randomly selected for opening of an MFI branch.
- First endline survey was 15-18 months after introduction of microfinance in each neighborhood.
- Second endline survey was two years later.
- ▶ **Total sample**: 6,864 households, 90% maintained contact.

Main Conclusions (First Endline)

- NO DIFFERENCE in monthly per capita consumption and monthly non-durable consumption.
- Significant POSITIVE IMPACTS of the purchase of durables households reduced spending on what they described as "temptation goods".
- INCREASE in the number of new businesses created, particularly by women.

Simplified Empirical Strategy

- ► **Treatment**: spandana_1 (Has outstanding loan from Spandana at endline 1, Binary)
- Instrument Variable: treatment (whether be selected as treatment area, Binary)
- ▶ Outcomes: the household expenditure and its structure.

Empirical Results

▶ NO DIFFERENCE in monthly per capita consumption. (Conclusion 1)

	total expenditure	total expenditure per capita
OLS	74.4	-25.6
	(20.1)	(40.5)
2SLS	1041.0	267.8
	(812.3)	(164.2)
LARF	1105.3	275.7*
	(840.6)	(166.2)

Empirical Results

- NO DIFFERENCE in monthly non-durable consumption. (Conclusion 1)
- ► Significant POSITIVE IMPACTS of the purchase of durables households reduced spending on what they described as "temptation goods". (Conclusion 2)

	durables	nondurable	temptation
OLS	40.4	60.2	48.7**
	(84.1)	(165.6)	(21.9)
2SLS	868.6**	308.6	-189.9**
	(342.9)	(668.8)	(89.4)
LARF	880.6***	323.1	-190.1**
	(364.31)	(691.5)	(93.2)

Reference

▶ Duflo, E., Dupas, P., Kremer, M., & Sinei, S. (2006). Education and HIV/AIDS prevention: evidence from a randomized evaluation in Western Kenya. World Bank Policy Research Working Paper, (4024).

Introduction

- A seven-year randomized evaluation.
- What effect the education subsidies and HIV curriculum on adolescent girls' dropout, pregnancy, marriage and sexually transmitted infection in Kenya.
- ▶ **Education Subsidies**: providing two free school uniforms over the last three years of primary school.
- ▶ HIV curriculum: three teachers in each primary school received government-provided training to help them deliver Kenya's national HIV/AIDS curriculum.
- ► **Conclusion**: Both programs combined reduce STI more, but cut dropout and pregnancy less, than education subsidies alone.

Simplified Empirical Strategy

- ► **Treatment**: Whether dropped out of primary in 2005. (dropout05v3: Binary)
- ▶ Instrument: If school benefit from uniform program (Utreat: Binary)
- ► Outcome: Ever married, pregnant, had child (evmar05v3, evpreg05v3, evchild05v3: also binary)

Simplified Empirical Result

- ▶ LARF cannot get estimation if we use the "least square" method (here we use "ML" method) (Estimate is "marginal effects at the means" for LARF).
- The coefficients are insignificant for LARF but more significant for 2SLS.

	marriage	child	pregnant
2SLS	0.67***	0.19	0.42**
	(0.19)	(0.16)	(0.17)
LARF	0.61	0.51	0.69
	(0.40)	(0.98)	(1.36)

Reference

▶ Duflo, E., & Pande, R. (2007). Dams. The Quarterly Journal of Economics, 122(2), 601-646.

Background

- ► The fast growing of construction of dams in India. (Epitome / Main form of Public Investments)
- ► The productivity and distributional effects are uncertain. (Poverty, Agricultural Production & Welfare)
- ► Trade-off: displacement vs. water-access.
- ► Irrigation is the primary purpose of over 95% of large Indian dams.

 Graph Illustration

- Data: Balanced panel data from 1973-1999 in GIS-district level in India
- Dependent Variables: several social economy variables (Gross Irrigated Area, Total Production, Poverty Gap, Headcount ratio)
- Independent Variable: district-wise number of new dams

- **Endogeneity**: Geographic suitability, political clout and economics potentials all affect dam placement.
- Instrument Variable: the gradient of rivers. Gradient Distribution

$$Slope\% = \frac{Rise}{Run} \times 100\%$$

Figure: the calculation of gradient

Main Conclusions

- Dams do not affect agricultural production in the district where they are located.
- Irrigated area and agricultural production increase in districts located downstream.
- ► Poverty declines in the districts located downstream from a dam, but increases significantly in districts where dams are built.

Simplified Empirical Strategy

- ► Transform panel data to Cross-Section data (in 1999, within district)
- ► **Treatment**: A state with more than a hundred dams by 1999 is a 'high' construction state. (calculated from sdistrict1: Binary)
- ▶ **Instrument**: A district with less than 90% of river gradient below 1.5% percent is classified as a 'high' gradient district. (calculated from damsumstate: Binary)
- ► Outcome: log yield of main crops (lyield), total value of production of water-intensive crops (waterp)

Simplified Empirical Result

- ► Conclusion 1 has been proved (Dams do not affect agricultural production in the district where they are located.)
- ► The coefficients are insignificant for both outcomes using different regression method. (very different estimates)

	lyield	waterp
OLS	-0.108	-0.284*
	(0.10)	(0.16)
2SLS	6.02	19.70
	(11.09)	(35.42)
LARF	-1.539	-10.69
	(4.50)	(19.26)

Table of Contents

- 1 Theoretical Analysis
- 2 Empirical Application & Results
- 3 Discussion
- Appendix

Potential Progress

- Comparation among different methods.
 - Probit, IV probit, Bivariate probit (for Binary outcome)
- Exploration in the principle of LARF.
 - How to explain and interpret the coefficient provided by LARF?
- Application and Replication using LARF pacakge.
 - Angrist, 1990: Veteran (Treatment) and Draft (IV)
 - Acemoglu, 2001: Modern Institute (Treatment) and Mortality (IV)
 - ▶ Binary outcome variable example...

Table of Contents

- **Appendix**

Banerjee et al. (2015) Back

Figure: Timeline of data collection and randomization

Duflo et al. (2007) Back

Figure: Illustration graph for an Irrigation Dam

Duflo et al. (2007) Back

Figure: the distribution of gradient

Reference

- Slides and Data of Banerjee et al. (2015).
- Slides and Data of Duflo et al. (2007).